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Abstract Most general self-dual spin 1/2 models in any dimension, with interaction that is
translation-invariant in a suitable sense (‘transitive models’), are determined. In the process
of classification of such systems, a class of models which are self-dual in a particularly
strong sense is introduced.
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1 Introduction

Starting with Kramers-Wannier [11] and Onsager [13, 21], duality arguments have been
used extensively in Statistical Mechanics of a lattice models. Restricted at first to systems
with two-body nearest neighbor interactions (Ising Model on various lattices, Potts Model),
in 1970s the theory has been extended to systems in which any number of spins may be
coupled (Wegner [7, 12, 22, 24]).

Duality yields especially strong results in case of self-dual systems. And, starting again
with [11], quite a few models has been shown to be self-dual—to some of these we will refer
below.

The term ‘duality’ is used in Statistical Mechanics to describe a relation between a system
at low temperature and another one at high temperature, at large and small values of cou-
pling constants in Field Theory. Such a relation can be obtained by many different methods:
transfer matrix method of [11]; ‘topological’ method of Onsager, and the equivalent graph
theoretical method; combination of these methods with other transformations, star-triangle,
for example, again originating with Onsager; and a method introduced by Wegner [22] that
uses vector space structure over the two-element field F2 = {0,1} (or the corresponding
group structure [7, 12]). We stress that the present paper is concerned with spin 1/2 systems
only. Duality in systems with more than two components, like the Potts model, or lattice
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field theory—see [14, 25] for early reviews, and [5] for a more recent publication—is not
discussed here. Also, we concentrate on the description of self-dual models, leaving out the
standard by now consequences of duality, relation between order and disorder variables, in
particular, for which we refer to [7, 9, 10, 22].

The notion of duality adopted here is that of [22] (and of [7]). It is equivalent, in a
sense, to that of theory of binary linear codes, [19]. It is general enough to cover a host of
interesting examples (in any dimension; systems with finite and infinite number of ground
states and low-temperature phases), and restrictive enough to allow for a general analysis:
we describe, for any dimension d , the most general self-dual spin 1/2 model on the simple
lattice Z

d , with interaction that is Z
d -invariant in a suitable sense (‘transitive models’, for

short: the two-dimensional Ising Model and the triangular three-spin model—models M1

and M3 of Sect. 2, are transitive, while the (self-dual Type A) Union-Jack model, or the
M2n,n models, n ≥ 2, of [22], and the model of [23], are not, and are outside the scope of the
present paper). Extensions of our results to general lattices and to Abelian groups different
from F2—to situations where the constructions are much less canonical, will be treated in a
future publication.

Our analysis is facilitated by considering algebraic structure which incorporates the trans-
lations, i.e., the structure of a F2[Zd ]-module introduced into the present context in [8]
(Sect. 3 below), with the result that the infinite dimensional vector space (over the field F2)
of infinite systems is turned into a finite dimensional module, or even into a finite dimen-
sional vector space over the field of fractions of the ring F2[Zd ].

In the next section, after a preliminary formulation of our main result (Theorem 1), we
pass to a more detailed investigation of the duality map and to a discussion of a number of
examples. In particular, we find that some self-dual systems are ‘more self-dual’ then others,
leading to their classification into three types, called here A, B, C, of a descending degree
of self-duality. While there is an infinite number of models of each type, and a few models
of the first two types have been solved, the author is not aware of a soluble model of Type
C. The distinction between different class of models acquires even more substance when
one considers finite systems with periodic boundary conditions, associated error correcting
codes, and zeros of partition function (see [19]). Section 3 contains proofs of the results
formulated in Sect. 2.

A simple version of the main result of the present paper, Theorem 1 below, was described
in [17]. This note did not make it through the refereeing process, but the result was men-
tioned in [18, concluding remarks] and [7, p. 25]. Since then a number of models covered
by our results have been shown to be self-dual (see models M2 of Sect. 2). Our interest in
the subject has been rekindled by its relation to coding theory, both classical and quantum,
which is discussed in [19].

2 The results

A d-dimensional spin 1/2 ferromagnetic system with a finite range interaction is transitive
if its energy can be written as

H = −
∑

B∈B

J (B)σB, where σB =
∏

a∈B

σa, σa = ±1, a ∈ Z
d , J (B) > 0,
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where B is a Z
d -invariant family of finite subsets of the lattice L = Z

d (bonds) with a finite
fundamental subfamily1; we call such a system transitive since the translations under which
the set of the bonds is invariant act on the lattice in a transitive way. In most of the paper,
the dimension d of the lattice is larger than 1 and the interaction J is periodic, i.e., invariant
under a subgroup of Z

d of a finite index—we refer to p. 9 below for a discussion of a number
of examples.

Let

Z� (K) =
∑

σa=±1,a∈�

exp
∑

B∈B,B⊂�

K(B)σB, K(B) := J (B)

kBoltzmannT
= βJ (B), (1)

be the partition function with ‘zero boundary conditions’ of a system in a finite subset � of
the lattice, and let

P (K) = lim
�

1

|�| lnZ� (K)

be the (dimensionless) free energy (‘pressure’) of the system. We will refer also to K as the
interaction of the system.

While the full description of our results (Theorem 2 of the end of this section) is some-
what involved, we start with the simplest form of the main result—the usual duality relation
for the free energy for translation invariant interaction:

Theorem 1 Suppose that all the bonds of a system are translations of just two, B1 and B2,
and suppose that the interaction of the system is translation invariant. Define a translation
invariant interaction K∗ with the same bonds B by

tanhK∗(B1) = exp−2K(B2), tanhK∗(B2) = exp−2K(B1).

Then

P (K) − 1

2
(ln cosh 2K1 + ln cosh 2K2) = P (K∗) − 1

2

(
ln cosh 2K∗

1 + ln cosh 2K∗
2

)
. (2)

The duality relation (2) can also be cast into a rational form: Let w = (w1,w2) =
(e−2K1 , e−2K2) and let w �→ P̃ (w) be the function of w defined by the left hand side of (2).
Then (2) is equivalent to

P̃

((
1 − w2

1 + w2
,

1 − w1

1 + w1

))
= P̃ ((w1,w2)).

We pass now to a more complete discussion of our result and of a number of examples.
Following [12, 22], for a finite subset � of the lattice, we set B� = {B ∈ B : B ⊂ �},

�� = {−1,1}�, and we let γ�, �� and K� be defined by the formulae (6)–(9) with B and
� replaced by B� and ��, respectively. Furthermore, let S� = kerγ� and let

Z� = |S�|
( ∏

B∈B�

expK(B)

)
ZLT

� where ZLT
� =

∑

β∈��

∏

B∈β

e−2K(B), (3)

1A subfamily B0 of B is fundamental if any element of B is a translation of just one of its elements.
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Z� = |��|
( ∏

B∈B�

coshK(B)

)
ZHT

� where ZHT
� =

∑

β∈K�

∏

B∈β

tanhK(B), (4)

be the Low Temperature (LT) and High Temperature (HT) Expansions of the partition func-
tion (1); as in [7, 21, 22] and other works, self-duality is obtained once one finds one-to-one
transformation B → B which maps K onto �. Moreover, the transformation should respect
the translation invariance of the system. The essential difference in the approach of [7, 22]
and that of the present work is that while in these references one uses the group, or of a vec-
tor space, structure of K and �, and the translation invariance is obtained as an afterthought,
here, following [8], one takes advantage of the action of translations to enrich the algebraic
structure, after which the self-duality is rather obvious.

We begin by recalling a few definitions. P(B) (Pf (B)) denotes the family of all subsets
(all finite subsets) of B. P(B), and Pf (B), is an Abelian group under the operation α,β �→
α + β of symmetric difference:

α + β = (α\β) ∪ (β\α) , (5)

the empty subset being the zero-element of the group. Since 2α = 0 for any α, P(B) is a
vector space over F2.

As mentioned earlier, we assume that the family B of bonds is translation invariant, i.e.,
for any B ∈ B, its translation by a ∈ Z

d , τaB , is also an element of B. τ will also stand for
action of Z

d on Pf (B) and other objects derived from B. Subgroups of Pf (B) which are
invariant under translations (by vectors of Z

d ) are called Z
d -modules or F2[Zd ]-modules.

Thus, following [8], we consider the Z
d -modules of ‘cycles’

Kf = Kf (B) = {β ∈ Pf (B) : ∏B∈β σB = 1 for any σ ∈ �}, (6)

and of ‘contours’

�f = �f (B) = {β ∈ P(B) : β = γ (σ ) for some σ ∈ �f }, (7)

(�)f = (�)f (B) = {β ∈ P(B) : β = γ (σ ) for some σ ∈ �} ∩ Pf (B); (8)

((�)f is the cl�f of [8]); here � = {−1,1}L is the set of all the spin configurations, �f

is the subfamily of configurations with “+”-boundary conditions (�f = {σ ∈ � : the set of
a ∈ L for which σa = −1 is finite}), and γ ,

γ (σ ) = {B ∈ B : σB = −1}, σ ∈ �, (9)

is a Z
d -modules homomorphism � → P(B).

Proposition 1 For any transitive system, �f (B) (and (�)f ) is always generated (as Z
d -

modules) by one of its elements; Kf (B) is generated by just one of its elements if and only if
|B0| = 2. The generator of �f (B) (and of (�)f ) is unique, up to a translation. The same is
true about the generator of Kf in case of |B0| = 2. (In other words, the Z

d -module �f (B) is
always (a free module) of rank one, and the module Kf (B) is of rank one if and only if the
module B is of rank 2.)

In the rest of this section it is assumed that all the bonds B of the system are translations
of just two (two-bond system), and we fix arbitrarily a fundamental subfamily B0 = {B1,B2}
of B.
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We will say that an (ordered) pair of subsets of the lattice is a translation of another pair
of subsets, say (A1,A2) is a translation of (A′

1,A
′
2), if Ai = τaA

′
i , i = 1,2, for some a ∈ Z

d ,
and we write then (A1,A2) = τa(A

′
1,A

′
2); and for any subset A of Z

d , its inversion I (A) is
defined by

I (A) = {a ∈ Z
d : −a ∈ A}; (10)

we set I (B) = {I (B) : B ∈ B}.
If B and B∗ are two sets with Z

d action, then a one-to-one mapping B �→ B∗ of B onto B∗
such that (τaB)∗ = τa (B

∗) ((τaB)∗ = τ−a (B
∗)) for all a ∈ Z

d will be said to commute (an-
ticommute) with translations and will be called Z

d -bijection (IZ
d -bijection). Z

d -bijection
(IZ

d -bijection) B �→ B∗ induces Z
d -isomorphisms (IZ

d -isomorphisms) of subgroups of
Pf (B) onto subgroups of Pf (B∗) in the standard way. In particular, the mapping B �→ I (B)

induces IZ
d -isomorphisms of subgroups of Pf (B) onto subgroups of Pf (I (B)).

In general, (�)f may be strictly larger than �f . A system is reduced, [8], if (�)f = �f .
Every system is equivalent, in a sense, to a reduced one—its reduced version, [8]. The next
four propositions are concerned with isomorphisms of the groups Kf and (�)f which com-
mute, or anticommute, with translations. In Propositions 2–4 and the Corollary to Proposi-
tion 2, it is assumed that one is dealing with a reduced transitive two-bond system. Proposi-
tion 5 extends these results to general, not necessarily reduced, two-bond systems.

Proposition 2 A Z
d -bijection B �→ B∗ of B onto I (B) induces a Z

d -isomorphism of Kf (B)

onto �f (I (B)) if and only if (B∗
1 ,B∗

2 ) is a translation of (I (B2), I (B1)).

Corollary There exists an IZ
d -bijection of B onto B which induces an IZ

d -isomorphism
of Kf (B) onto �f (B). The IZ

d -bijection is unique, up to a translation. If B0 = {B1,B2} is a
fundamental subfamily of B then a self-duality mapping B �→ B∗ can be obtained by setting
B∗

1 = B2, B∗
2 = B1, and then by extending the mapping to all of B so that it anticommutes

with translations.

Taken together, Propositions 1–2 will imply that a transitive ferromagnetic lattice system
is self-dual if and only if it is a two-bond system.

Proposition 3 Let B �→ B∗ be a Z
d -bijection of B onto B which induces an isomorphism

of Kf (B) onto �f (B). Then B is invariant under I (i.e., I (B) ∈ B for all B ∈ B), (B∗
1 ,B∗

2 )

is a translation of (I (B2), I (B1)), and either

(a) B∗
1 is a translation of B2 and B∗

2 is a translation of B1, i.e., I (Bi) is a translation of Bi ,
i = 1,2. (Examples M1, M2 and M4 below), or

(b) (B∗
1 ,B∗

2 ) is a translation of (B1,B2), and then B2 is a translation of I (B1) (and B1 is a
translation of I (B2)). (Example M3 below.)

We note that in both (a)- and (b)-cases, B is I -invariant and B∗
i is a translation of I (Bj ),

i �= j .

Definition A subset B of Z
d is I -symmetric if it is invariant under an inversion with respect

to a point of 1
2 Z

d , i.e., if I (τ−aB) = τ−aB for some a ∈ 1
2 Z

d . A two-bond model is of Type
A if B2 is a translation of I (B1) (Examples M3 and M6, below), of Type B if its bonds are
I -symmetric (examples M1, M2, M4, M5, below), of Type A∨B if it is either of Type A or
of Type B, and of Type C if it is not of Type A∨B.
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Hence, a model is of Type A∨B if and only if its family of bonds is I -invariant.
The next Proposition shows that Type A systems are self-dual in a strongest possible

sense and gives a geometric characterization of Type B systems.

Proposition 4

(i) There exists a Z
d -bijection of B onto B which induces an isomorphism of Kf (B) onto

�f (B) if and only if the system is of Type A ∨ B

(ii) The following three conditions are equivalent:
(a) The system is of Type A
(b) Kf = �f

(c) Kf and �f have non-trivial intersection, i.e., Kf ∩ �f �= {0}
(iii) A system is of Type B if and only if its bonds are I -symmetric sets. And no system is

both of Type A and Type B.

Proposition 5 (With an obvious modification of definitions) Propositions 2–4 and Corollary
to Propositions 2 hold for all, not necessarily reduced, transitive two-bond systems, provided
�f is replaced by (�)f .

Definition A Z
d -system (L, B,K) is self-dual if there is a Z

d - or an IZ
d -bijection B �→ B∗

from B onto B (‘self-duality mapping’ ), such that the induced isomorphism of Pf (B) onto
Pf (B) maps Kf (B) onto �f (B), or onto (�)f (B), if the system is not reduced.

Defining, for a finite � ⊂ L, the ‘symmetrized’ partition function and pressure:

Z̃�(K) = Z�(K)√
|��| |S�|∏B∈B,B⊂� cosh 2K(B)

and

P̃ (K) = lim
�

|�|−1 ln Z̃�(K)

—Z̃ is the Y of [8, Appendix A] and [22, (2.24)], for systems with a periodic K , say nZ
d -

invariant, one has

P̃ (K) = P (K) − 1

2nd

∑

B∈B/nZd

ln cosh 2K(B), (11)

and if such a system is self-dual then

P̃ (K∗) = P̃ (K), (12)

where K∗ is related to K by tanhK∗(B∗) = exp−2K(B), [7, 22]. For translation invariant
K , (12) reduces to (2); (12) holds also for quasiperiodic K .

The main results of Propositions 1–5 can now be summarized as follows:

Theorem 2 A transitive ferromagnetic spin 1/2 system is self-dual if and only if it is a two-
bond system. For any two-bond system, there exists a unique, up to translation, self-duality
IZ

d -mapping, and there exists a self-duality Z
d -mapping if and only if the system is of Type

A ∨ B .
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Examples We place now some well known models in the framework of the present paper
and show that self-dual models can be quite varied. More detailed analysis is obtained when
one considers properties of finite volume systems with periodic boundary conditions, [19].

The last two models, M5 and M6, are reduced three-dimensional. As is typical for models
in dimension higher than two, they have infinite number of extremal Gibbs states at low
temperatures. Discussion of more models, especially of Type A, will be found in [19].

We will write x, y (x, y, z) for the elements of the canonical basis of Z
2 (Z3).

(M1) Two-dimensional Ising Model:

B1 = {0,x} = • •, B2 = {0,y} =
•
• .

The model is reduced and of Type B. The Z
2-modules Kf and �f are generated by

β0 = {B1, τyB1,B2, τxB2} (‘square’) and γ0 = {B1, τ−xB1,B2, τ−yB2} (‘cross’) respectively.
In the notation of the formulae (15) and (17), below,

β0 = B2 · {B1} + B1 · {B2} and γ0 = I (B1) · {B1} + I (B2) · {B2}.

(M′
1) This is a blown-up version of the two-dimensional Ising Model (i.e., M1 is its re-

duced version):

B ′
1 = {0,2x} = • ◦ •, B ′

2 = {0,x,y,x + y} =
• •
• •

(the circle indicates a point that is not in the bond). The Z
2-modules Kf and (�)f are

generated by β0 = {B ′
1, τyB

′
1,B

′
2, τxB

′
2} and γ0 = {B ′

1, τ−xB
′
1,B

′
2, τ−yB

′
2}, respectively, while

γ ′
0 = {B ′

1, τ−2xB
′
1,B

′
2, τ−xB

′
2, τ−yB

′
2, τ−(x+y)B

′
2} is a generator of �f . In the notation of the

formulae (15), (16) and (17), below, D = gcd(B ′
1,B

′
2) = {0,x}, Bi = B ′

i/D, β0 = B2 · {B ′
1}+

B1 · {B ′
2} and γ0 = I (B1) · {B ′

1} + I (B2) · {B ′
2}, respectively, while γ ′

0 = I (B ′
1) · {B ′

1} +
I (B ′

2) · {B ′
2}, and B1,B2 are as in M1. The model has an infinite number of ground states—

one can flip spins, independently in each row, but still only two pure phases at low enough
temperatures, [8].

A detailed analysis of a three-dimensional blowned-up version of the two-dimensional
Ising Model can be found in [16], where it was noted, among other things, that the model is
self-dual.
(M2) Two-dimensional Type B model with a two- and three-spin interaction: B1 =
{0,x,2x} and B2 = {0,y} ([1, 2, 6, 15]); [20] has its m × n generalization with B1 =
{0,x,2x, . . . ,mx} and B2 = {0,y,2y, . . . , ny}. A further generalization is obtained by con-
sidering ‘linear bonds’ with gaps. If the bonds are inversion invariant, like in the case of

B1 = • • ◦ • • and B2 = •• , one obtains a Type B model, while its slight variation

B1 = • • • ◦ • and B2 =
•
•

yields a model, M′
3, which is of Type C.

(M3) Triangular Three Spin, or Baxter-Wu, Model: B1 = {0,x,y}, B2 = {0,−x,−y} =
I (B1)—the simplest model of Type A.
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The model has been introduced and shown to be self-dual in [12] and [24], and then
solved in [3, 4].
(M4) Here is a more complicated Type B model: B1 = {0,x,2x + y,x + 2y,2y,−x + y},
B2 = {0,y},

B1 =
• •

• ◦ ◦ •
• •

, B2 =
•
• .

The model is reduced; its ground states are the same as that of ‘linear’ system with B0 =
{{0,3x}, {0,y}}, which implies that it has 23 ground states, and the same number 23 of pure
phases at low temperatures.
(M5) A three-dimensional reduced Type B model: B1 = {0,x,y,x + y}, B2 = {0, z}.
(M6) A three-dimensional reduced Type A (‘simplex’) model: B1 = {0,x,y, z}, B2 = I (B1).

3 Proofs

In the proofs, we will use the algebraic structure introduced into the present context in [8].
We refer to [8] for a more detailed exposition.

The Abelian group Pf (Zd) (under symmetric difference (5)) when equipped with the
multiplication operation A · B = ∑

a∈A τaB is a ring, denoted by R in what follows—the
group algebra F2[Zd ] of Z

d with coefficients in the two element field F2 = {0,1}. Any Z
d -

module is a R -module. The modules considered below are Pf (B) and its submodules Kf ,
�f and (�)f . The product of an element β of Pf (B) by an element A of R is

A · β =
∑

a∈A

τaβ. (13)

If B and B∗ are two sets with Z
d action and B �→ B∗ is a Z

d -mapping B → B∗ then the
induced mapping Pf (B) → Pf (B∗) commutes with the action of the ring:

(A · β)∗ = A · β∗. (14)

We will use the following, ‘polynomial’, notation ([8]): for a ∈ Z
d , we will write Xa for

the element {a} of R and then Xaβ for the element {a} · β , where β is an element of an
R-module. We have then Xa+b = XaXb .

We will use the following simple properties of the ring R, [8]:
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(P1) It has no zero divisors: if P · Q = 0, P,Q ∈ R, then either P = 0 or Q = 0.
(P2) units (invertible elements) of R are of the form {a}, a ∈ Z

d .
(P3) (Existence of a greatest common divisor) for any family (Pi : i ∈ I ) of elements of R

there exists a unique, up to a factor which is a unit, greatest common divisor of the
family, gcd(Pi : i ∈ I ), i.e., an element P of R which divides each Pi and such that
any other element of R with this property divides P .

For a two-bond system, the unique, up to translation, generator of the Z
d -module Kf (B)

will be denoted β0. In case of a reduced system

β0 =
∑

a∈B1

{τaB2} +
∑

a∈B2

{τaB1},

or, in the notation of (14),

β0 = B1 · {B2} + B2 · {B1}; (15)

in general, when the system is not necessarily reduced,

β0 = B1

D
· {B2} + B2

D
· {B1} where D = gcd (B1,B2) . (16)

�f (B) is always generated by

γ0 = I (B1) · {B1} + I (B2) · {B2}, (17)

while (�)f is generated by

γ0 = I

(
B1

D

)
· {B1} + I

(
B2

D

)
· {B2}. (18)

Proof of Proposition 1 If |B0| > 2 then, according to app. B of [8], Kf is not generated by a
one element (i.e., the R-module Kf is of rank larger than 1), while �f is, and therefore the
system is not self-dual. (An earlier, somewhat different formulation of the proof of the fact
that no system with |B0| > 2 is self-dual, can be found in [7, p. 25].)

The uniqueness part follows from the following remark: let

α =
k∑

i=1

Ai{Bi}

be an elements of Pf (B), and let α′ = C
∑k

i=1 Ai{Bi} be a generator of the submodule R ·α
of Pf (B) generated by α. Then there exists an A ∈ R such that α = Aα′, i.e., such that
AC = 1. It follows that C is a unit. (“Generator of a singly generated submodule of a free
module is unique, up to a factor which is a unit.”) To finish the proof, it is enough to apply
this remark to �f , (�)f (for any transitive system) and to Kf (for any transitive two-bond
system). �

Proof of Proposition 2 Let B �→ B∗ be as in the Proposition. Both B∗
1 and B∗

2 cannot be
translations of the same element of I (B0) since then B∗

2 would be a translation of B∗
1 , and

therefore B2 would be a translation of B1. Hence either (a) B∗
1 is a translation of I (B2) and

B∗
2 is a translation of I (B1), or (b) B∗

1 is a translation of I (B1) and B∗
2 is a translation of

I (B2).
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If (b) is the case, say B∗
i = Xai I (Bi) for some a1, a2 ∈ Z

d , then

β∗
0 = (B2{B1} + B1{B2})∗

by (14)= B2{B∗
1 } + B1{B∗

2 } = B2{Xa1I (B1)} + B1{Xa2I (B2)}

is a generator of �f since β0 is a generator of Kf (|B0| = 2!). It then follows from the
uniqueness part of Proposition 1 that there exists a ∈ Z

d such that

B2{Xa1I (B1)} + B1{Xa2I (B2)} = Xa (B1{I (B1)} + B2{I (B2)}) , (19)

which implies that B2 is a translation of B1—a contradiction proving that only the case (a)
can occur.

Let then B∗
1 = Xa1I (B2) and B∗

2 = Xa2I (B1) for some a1, a2 ∈ Z
d . Then (19) is replaced

by

B2{Xa1I (B2)} + B1{Xa2I (B1)} = Xa (B1{I (B1)} + B2{I (B2)}) ,

which implies that a2 = a1, as claimed.
To prove the “if-part”, let B �→ B∗ be the (unique) Z

d -bijection of B onto B∗ := I (B)

such that B∗
i = I (Bj ), i �= j . Denoting again by * the induced Z

d -isomorphism of Pf (B)

onto Pf (B∗), one obtains

β∗
0 = (B2 · {B1} + B1 · {B2})∗ = B2 · {B∗

1 } + B1 · {B∗
2 } = I (B∗

1 ) · {B∗
1 } + I (B∗

2 ) · {B∗
2 }.

Since I (B∗
1 ) · {B∗

1 } + I (B∗
2 ) · {B∗

2 } is a generator of �f (B∗), B �→ B∗ defines an Z
d -

isomorphism of Kf (B) onto �f (B∗). This ends a proof of Proposition 3. �

Proof of Corollary ϕ : β �→ I (β) := {I (B) : B ∈ B} is an IZ
d -isomorphism of Pf (B) onto

Pf (I (B)). It maps A ·β onto I (A) · I (β), and therefore ϕ(γ0) is a generator of �f (I (B)). �

Proof of Proposition 3 Arguing as in the proof of Proposition 2, we see that either (a) B∗
1 is

a translation of B2 and B∗
2 is a translation of B1, or (b) B∗

1 is a translation of B1 and B∗
2 is a

translation of B2.
Suppose that one has the case (b), say B∗

i = Xai Bi for some ai ∈ Z
d , i = 1,2. Then

instead of (19) one has

B2{Xa1B1} + B1{Xa2B2} = Xa (I (B1){B1} + I (B2){B2}) (20)

for some a ∈ Z
d . It follows that

Xa1B2 = XaI (B1) and Xa2B1 = XaI (B2). (21)

(21), which is the same as (B∗
1 ,B∗

2 ) = τa(I (B2), I (B1)) and which implies that a2 = a1, and
then that

B2 = XcI (B1) (and B1 = XcI (B2)), where c = a − a1 = a − a2,

proving (b). (We note that one can always choose B0 so that B2 = I (B1), as we did in
Example M3.)
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In the case of (a), say B∗
1 = Xa1B2, B∗

2 = Xa2B1, a1, a2 ∈ Z
d , proceeding as in the (b)-

case, one arrives at

B2{Xa1B2} + B1{Xa2B1} = Xa (I (B1){B1} + I (B2){B2}) ,

a ∈ Z
d , i.e., at

Xa2B1 = XaI (B1) and Xa1B2 = XaI (B2),

which again can be written as (B∗
1 ,B∗

2 ) = τa(I (B2), I (B1)), and which is the same as

I (B1) = Xa2−aB1 and I (B2) = Xa1−aB2.

Note that, unlike in case (b), in the (a)-case it is in general not true that a1 = a2 (see
Example M′

1). �

Remark The example of B1 = {0,x,2x}, B2 = {0,y} shows that, in general, one may not be
able to choose a translation B ′

1 of B1 and a translation B ′
2 of B2 so that (I (B ′

1), I (B ′
2)) is a

translation of (B ′
1,B

′
2).

Proof of Proposition 4 To prove the first part of the Proposition, it is enough to show that
(c) implies that B2 is a translation of I (B1).

Suppose that β is a non-zero element of both �f and Kf :

β = A1 (I (B1) · {B1} + I (B2) · {B2}) and

β = A2 (B2 · {B1} + B1 · {B2}) ,
(22)

where A1,A2 ∈ R. (22) is equivalent to

A1I (B1) = A2B2 and A1I (B2) = A2B1, (23)

which implies that

B1I (B1) = B2I (B2) . (24)

Setting C = gcd(I (B1),B2),

B ′
2 = B2/C and B ′

1 = B1/I (C), (25)

(24) implies that B ′
1I (B ′

1) = B ′
2I (B ′

2), and since I (B ′
1) and B ′

2 are relatively prime, this
implies that B ′

2 = U · B ′
1 for some U ∈ R for which U · I (U) = 1, which in turn implies

that U is a unit of R, and that therefore B ′
2 is a translation of B ′

1. Furthermore, by (25),
B2 = U ·C ·B ′

1 and B1 = I (C) ·B ′
1. But since gcd(B1,B2) is a unit (the system is reduced!),

this implies B ′
1 is a unit and that therefore B2 is a translation of I (B1).

The second part of the Proposition is obvious since I (B) = τbB is equivalent to
τa(I (τ−aB)) = B , where a = − 1

2b, and B2 = XaI (B1) = XbI (B2) if and only if B2 =
XcB1, c = b − a. �

Proof of Theorem 2 The “only if” part of the first statement of the theorem follows from
Proposition 1, and of the second statement from Propositions 2 and 3. The uniqueness state-
ment follows also from the propositions. To end the proof it remains to construct the duality
mappings.
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In case of Type A∨B system, define a self-duality map B → B, B �→ B∗, as in the proof
of Proposition 2 and then define K∗ by

tanhK∗(B∗) = exp−2K(B), B ∈ B. (26)

(Setting w = e−2K(B), w∗ = e−2K∗(B∗), one obtains a homographic version of (26): w∗ =
(1 − w)/(1 + w).)

In case of Type C systems, to obtain a self-duality map B �→ B∗, define first a Z
d -

bijection B �→ B~ of B onto I (B)—the B �→ B∗ mapping of the proof Proposition 3 and
then consider the IZ

d -bijection B � B �→ B∗ := I (B~) ∈ B with K∗ defined by (26). This
ends a proof of the Theorem. �

Proposition 5 is obtained through the reduction process of [8]: see formulae (16) and (18).
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